EFFECT OF SHIELDS ON RADIATIVE HEAT TRANSFER
WITHIN THE PENETRATION ZONE

L. A. Vadachkoriya UDC 536.3

A procedure is proposed for calculating the effect of thin "floating" shields and of cooled
cylindrical shields on radiative heat transfer within the penetration zone.

The effect of shields on radiative heat transfer within the penetration zone (e.g., within the reactor
radiation zone) is a problem which requires a separate study, because part of the penetrating radiant energy
is dissipated in a shield in the form of heat and thus affects the heat transfer between surfaces insulated
from one another. When a shield is exposed to a nonuniform heat load. then evidently its temperature field
becomes also nonuniform and internal heat is generated in an amount which depends on the thermal con-
ductivity of the shield material. It is important, in this case, to correctly estimate the effect of not only
the shield as a whole but also of its individual segments on the heat transfer.

The equations derived in [1], where the thermal effect of penetrating radiation on a shield is repre-
sented by an additional flux impinging on the shield and by a mean shield temperature, fully reflect the
effect of the shield set as well as of each individual shield segment on the thermal conditions, but do not
define the role of individual shield segments in the heat transfer.

A convenient method of estimating the effectiveness of individual shield segments would probably be
by comparing the temperature field of a given shield with the surface temperature of neighboring objects.

Thin "Floating" Shields. In determining the effectiveness of individual segments of a "floating™
shield (i.e., a shield which participates in heat transfer with other objects by radiation only), one must,
for certain reasons, disregard the heat transfer between a given segment and the other segments of the
same shield. Namely, in the total heat transfer between different shield segments by radiation and con-
duction the role of each is blurred because, although part of the heat which the segment most intensively
heated by penetrating radiation receives is transmitted further to other segmeats, this part is still involved
in radiative heat transfer between those other segments and the surfaces of neighboring objects and, there-
fore, in the end still bears on the effectiveness of the thermal insulation. As a result of heat transfer be-
tween different shield segments, the temperature becomes rather equalized over the entire shield (the
temperature of some segments rises, causing the temperature of other segments to drop) and it can pos-
sibly remain within the allowable limit throughout the shield, but in reality some individual shield seg-
ments will reduce the effectiveness of thermal insulation.

In Fig. 1 are shown the components of a closed system where heat is transferred radiatively between
surfaces A and B, with a thin "floating" shield Sh between them which splits system AB into two closed
systems. When one among many shields is considered, then obviously the surfaces of adjacent shields
must be taken as the surfaces A and B. We will assume that Tp > Ty, that all surfaces are gray, and that
the directional radiation coefficients are each constant over the respective surface. It may also be as-
sumed, if the shield is thin-walled and of uniform thickness, that its lateral surfaces have equal areas.

In this case the shield is most conveniently replaced by the surface of its median layer.

The steady~-state heat balance in a shield element conforming to these concepts can be written down
as
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d®y 4+ dl' — d®p =0, (1)
where
d® 4 = 02eeq, 1 9sua(Th — T})dsS;  dr = pby,dS;
APy = Gtz Gsn(T% _ T%) dS.
We disregard the temperature difference between opposite points

on the two shield surfaces. After the necessary substitution and trans-
formation, we have

m — aref.I(Pst + Eref, 2(PShBT41§ + p‘SYNfG ] (2)

ref, 1 Qgpg T ref, 2Pgpg

The mean shield temperature can be calculated from the condition:

®s = 0ty 105uS Ta—Toh) = | dPa.
S

Fig. 1. Schematic diagram After the necessary substitution and transformation, letting T = pd f—yNdS,
of a "floating™ shield. we have $
1 1
T 2ref, b 8ot 2 T'/(eS 0
Ty == (i Y T}‘vdS) = [ 2 9an T f-jjs"”‘%* (oS) ] : (3)
S N . eref,l(PShAl 3sf.2q)sha
S

The same result is obtained from the condition that &g :f dég.
S

It is easy to see that formula (3) represents a special case of the solution fo the equation derived in
{1l

a) When one considers protecting the relatively cold surface, i.e.. surface B in Fig. 1 against incre-
ments of heat, one must take into account that heating the shield will reduce the effectiveness of shielding
the insulated surface. A case in point is the thermal insulation of low~temperature apparatus installed
within the radiation penetration zone. It is convenient here to compare the temperature field of the shield
with the temperature of the relatively hot surface, i.e.. with the temperature Tp. If one finds that the
temperature of any shield segment is above Ty, this segment reduces the thermal insulation and must be
removed. This requirement can be expressed as Ty = T, . After the necessary substitution and trans-
formation, we have :

P‘S'YN \< Uemf, Z(Psha (qu —_ T43) ) (4)

When the maximum thermal flux per unit mass supplied to the shield by penetrating radiation is
known, then the critical thickness for a shield of a given material can be calculated by the formula

- Orer,aPsnp (Th—T%) (5}
- p?max ’
while the critical flux supplied per unit shield mass of given thickness and material is
8, 2ot (Ts — T'5) (6)
Ve, = = 96 -

When there are n shields in a set, the formula for the resulting thermal radiation flux at the insu-
lated surface B is in this case [1]:

: LI ;i . —
Dy = o8 pH (T —T) + E (rh Saz s ) = (:-;(-TA Ts) '1‘2 L g ——— |- (7N
e

€,,H
At A 1 o 1
Sm.iHi

=1 eretif1; =1
The last formula indicates that more shields in the penetration zone, with all other conditions un-
changed, will increase the shielding effectiveness, i.e., will reduce the magnitude of &g, up to a certain
number of shields above which the shielding effectiveness will again decrease. As is well known, increas-
ing the number of "floating" shields outside the irradiation zone will always improve the shielding effective-
ness [1].
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Fig.2, Schematic diagram of a cylindrical shield cooled
at the end surface.

In order to determine the optimum number of "floating" shields inside the reactor radiation zone, it
is evidently necessary to find the minimum of function ég(n) from formula (7).

b) When one considers protecting the relatively hot surface, i.e., surface A in Fig. 1 against heat
loss, one must take into account that heating the shield will improve its effectiveness until Tgyn =Ta and
full shielding is attained. Further heating of the shield will again reduce its effectiveness.

In order to determine the optimum thermal flux supplied to the shield by penetrating radiation, we
substitute (3) for Tgp in the condition Tgy = Ta. A few minor transformations yield

I“opt = 08t 9Pshp S (Ti; — '.7’43). (8)

In this case the resulting thermal radiation flux between shield surface and surface A is equal to zero, and
all extraneous heat T'gpt is transmitted to surface B.

With the material and the irradiation spectrum of the shield known, the optimum shield thickness can
be calculated by the formula:

Sopt=Topt /(0 | 744S ), (9
s
while with the shield material and thickness known, the optimum mean thermal flux per unit mass supplied
to the shield is

Yopt= I‘opt/(P‘SS)- (10

When there are nshieldsina set, the formula for the resulting thermal radiation flux to the insulated
surface A is in this case [1]

nt1
n _1 l
< e, H o (T —T%) =rt1 Eretill
@, = 0845H 4 (T —T) — 2 (rk ::Bfai )= nilA = Ta T | (11)

k=1

3 - y_Lo
" eref,"Hi g E,ﬁ.gHi

f==

The optimum number of shields, with all other conditions unchanged, can evidently be determined
according to formula (11) for the condition &5 = 0.

Cylindrical Shield Cooled at the End Surface. In low-temperature apparatus, the heatup of the
shields by penetrating radiation reduces their effectiveness. In such cases it is often possible to improve
the shielding effectiveness by cooling the shields. The extra thermal flux supplied to the shield [1] is the
algebraic difference between the thermal flux supplied by penetrating radiation and the thermal flux re-
moved by cooling. '

An end-surface cooling scheme for a cylindrical shield is shown in Fig. 2. The vacuum jacket A,
the shield Sh, and the insulated object B constitute coaxial cylinders. One end surface of the shield is
cooled and maintained at a constant temperature. If the cooling of the shield is considered as a one-
dimensional heat process, then the mean temperature of any shield section will be

1 x 1 x
T, =T, ' j q,4x =T, + F y (Pa,ep— Pp,xio + o) diy.
0 ’ 0
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Fig. 3. Schematic diagram of a cylindrical shield cooled
by a through-feed of gas.

Here &4 x4b’ &g, x;b> and rxib are thermal fluxes per shield segment of length I~x;, i.e., per seg-
ment x;b. These thermal fluxes are functions of x, and they can be calculated by the following formulas
{

Do = Sdcm — Gtt, Py 5 (Th —T4) dS, = Oty 7y j (T —Th) day
H

q)B,x,b = Sl ddPp = O8pf, chShBSv \'(Tzs - T%) dSz == O€ref, 2‘Psm; “dz S (TL - TjB) dxzr

E2) X1 *1

I

rx,,,_jdr_ pFJ'y Jdx,.

X1

After the necessary substitution and transformation, we have

x H x I
eroafig)eaf{ ) ecaf(frage
0 . xg 0

X1

where

A=

on
F (smf.ldefd + Eref,2 (PShgdleiB); Az = "% H

on
A3 —_ A’F (Smf_]_ dl + Eref, 2 q)Sthz)'

Ou the right-hand side of this equation there appears the unknown variable, which is found by methods
of approximate integration. The critical shield length is found from the condition Tx = Ty4.

The temperature of the uncooled shield end is
1

: 1
P L
Ty=T,+ A1"‘2‘— T Aaj‘ ( j‘ Ty, 0% > dx; — Asj ( j Ti,dx2) dx,.
0 0

X1 Xy

The mean shield temperature can be determined from the condition

1 [
DOy = O8er,17dl (T — Tih) = S dD 4 = O y7id; S' (T4 — THdx
0 0

or

. l
©p = Oy 5 Pgpy iyl (Th— T) = S‘ 405 = Oty 30y s S(T‘ T%) dx.
0
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After the necesary transformation, we have
I

1
Ty = (1— j' Tidx) . (13)
8

Cylindrical Shield Cooled by a Through-Feed of Gas (Fig. 3). The insulated object B, the shield Sh,
and the vacuum jacket A constitute coaxial cylinders. The shield is formed by two coaxial tubes. Cooling
gas is fed through the annular space between both tubes.

With heat transmission along the shield disregarded, the steady-state temperature of any shield sec-
tion can be determined from the condition of heat balance:

Tp= Ty AT, o ATy o= T 2= Pt Ly | A0 — dPpy vl
e adSq
Here &5 x, ®B,x, and I'x are thermal fluxes per shield segment of length x. These fluxes are functions

of x and they can be calculated by the following formulas:
£ z X

Pax= j‘d(DA = j‘ Ofres, 1(7'?4 - T?ct) dS; = 0,1 nd, j(T; - Ti;) dxy,
0 0 "0

Ppx= | dPs = j‘ OFes,2 (Psha(Tix —Th) dS, = TErer, 2Popp W j‘ (T, — T’5) dxy,
§

Ly 5

0 0

X X

I, = S‘dl‘ = pF S. Yy %y and dSg = n(dg + d,) dxy.
8 0

After the necessary substitution and transformation, we have

T, — A+ A+ Agy, + 4, j Py — ATE — A, S T* dx,, (14)
0 ¢
where
G lef‘l - ey, 2‘Pshnd2T§) 3
a(dy + dy) ’
ax (sxef.‘l'dlm 4 Erre (Pshsdsz) .
g == me s
_ _OF 4 _ _fF
*an(d,+d) Tt me

ks (Srer, 1 + Eret, 2P ) _om (Brer,1 01+ Eret 2 Psppdy)
a(d, + dy) 2 = me .

H

A=

nd 44

This equation. like Eq. (12), is solved by methods of approximate integration, and the critical shield
length is found from the condition Ty = Ty.

The mean temperature of a shield of length [ is determined with the aid of formula (13).

NOTATION

Tap, Tp are the mean temperatures (°K) of the relatively hot and of the relatively cold surface, respec-
tively, both surfaces insulated from one another;

Tsh is the temperature of the shield;

Ty is the mean temperature of an element of a "floating” shield defined by point N{x, y, z);

Tx ~ is the mean temperature of an arbitrary section of a cooled cylindrical shield defined by coor-
dinate x;

Ty is the mean temperature of the cooled end surface of 2 cylindrical shield;

T is the mean temperature of the uncooled end surface of a cylindrical shield;

T is the temperature of the cooling gas;

ATg, x is the temperature rise of the gas along a shield segment of length x;
ATgp,x is the mean temperature drop between the shield and the cooling gas, at a shield section defined
by coordinate x;
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is the resultant thermal radiation flux from the relatively hot surface A to the shield;

is the resultant thermal radiation flux to the relatively cold surface B;

is the thermal flux per unit mass supplied to the shield by penetrating radiation;

is the thermal flux supplied to the shield by the penetrating radiation;

is the Stefan—Boltzmann constant;

is the referred emissivity of the closed radiative heat transfer system consisting of the shield and
surface A;

is the referred emissivity of the closed radiative heat transfer system consisting of the shield and
surface B; :

is the mean directional radiation coefficient from the shield to surface A;

is the mean directional radiation coefficient from the shield to surface B;

is the referred emissivity of the set of closed systems formed by the shields between surfaces A
and B;

is the interradiation surface of the closed system AB without shields between A and B;

is the one lateral surface area of a "floating" shield;

is the thickness of a "floating" shield;

is the thermal flux per unif cross section area;

is the cross section area of a shield;

is the thermal conductivity of the shield material;

is the density of the shield material;

are the areas of outside (facing A) and of inside (facing B) surface of a cylindrical shield, respec-
tively;

are the diameters of those respective surfaces;

is the total area of the cylindrical surface, of outer and inner shield tube cooled by a through-feed
of gas;

is the length of the shield;

is the mass flow rate of the gas stream;

is the mean specific heat of the cooling gas;

is the mean coefficient of the heat transfer from the shield walls to the gas;

are the two insulated surfaces;

is the shield;

is the axial coordinate.
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